Journal of Organometallic Chemistry, 441 (1992) 45–49 Elsevier Sequoia S.A., Lausanne JOM 22962

Electrochemical studies on organometallic compounds

XLII *. Electrogeneration and spectroscopic characterization of $[Nb(\eta^5-C_5H_4SiMe_3)_2(PhC \equiv CPh-C,C)]$

H. Chollet, D. Lucas, Y. Mugnier

Laboratoire de Synthèse et d'Electrosynthèse Organométalliques asocié au CNRS (URA 33), Faculté des Sciences, 6 bd Gabriel, 21000 Dijon (France)

A. Antiñolo, A. Otero

Departamento de Química Inorganica, Universidad de Castilla–La Mancha, Paseo de Universidad 4, 13071 Ciudad Real (Spain)

and M. Fajardo

Departamento de Quumica Inorganica, Campus universitario, Universidad de Alcala de Henares, 28871 Alcala de Henares (Spain)

(Received March 25, 1992)

Abstract

The two-electron reduction of $[Nb(\eta^5-C_5H_4SiMe_3)_2Cl_2]$ in the presence of PhC=CPh yields the first acetylene niobium(IV) complex, $[Nb(\eta^5-C_5H_4SiMe_3)_2(PhC=CPh-C,C)]$.

Several studies of the chemical behaviour of bis(silylated cyclopentadienyl)niobium(III) complexes in the presence of π -acid ligands and cumulenes have been reported [1]. Acetylene complexes [Nb(η^5 -C₅H₄SiMe₃)₂XL] (X = Cl or Br; L=PhC=CPh) were obtained when PhC=CPh was added to the coordinatively unsaturated species [Nb(η^5 -C₅H₄SiMe₃)₂X] [2]. We describe here the electrochemical behaviour of [Nb(η^5 -C₅H₄SiMe₃)₂Cl₂] (1) in the presence of PhC=CPh. This allowed us to isolate the first niobium(IV) complex containing acetylene.

The cyclic voltammogram of 1 in tetrahydrofuran (THF) in the presence of 0.2 M tetrabutylammonium hexafluorophosphate as supporting electrolyte shows a

Correspondence to: Dr. Y. Mugnier.

^{*} For Part XLI, see ref. 7.

Fig. 1. Polarogram (average current) of 1 in THF in the presence of 1 equiv of PhC=CPh: (a) before electrolysis; (b) after two electron reduction at -115 V.

reversible A/A' system, where A' corresponds to the oxidation of $[Nb(\eta^5-C_5H_4SiMe_3)_2Cl_2]^-$ [3]. In the presence of 1 equiv. or an excess of PhC=CPh, no important modifications are observed at 0.2 V s⁻¹.

The electrolysis of 1 in the presence of 1 equiv. of PhC=CPh at -1.15 V (plateau of wave A) and consumption of 2 equiv. of electrons, yields a brown solution which exhibits polarographic reduction wave B₁ for the electrogenerated species 4 ($E_{1/2} = -1.85$, versus SCE electrode) and several ill-defined oxidation waves [4*] (Fig. 1).

Fig. 2. Cyclic voltammogram of 4 in THF on a platinum electrode. Starting potential, -1.5 V; sweep rate, 0.2 V s⁻¹

^{*} Reference with asterisk indicates a note in the list of references.

Fig. 3. ESR spectrum of 4 in THF at room temperature.

In cyclic voltammetry, a reversible B_1/B'_1 system was observed (Fig. 2). The ESR spectrum (g = 2.011) of 4 in THF is shown in Fig. 3. It consists of ten well-defined lines with $a_{Nb} = 16.37$ G reflecting coupling of the unpaired electron with the nuclear spin of niobium and extensive delocalization of the spin. Similar behaviour has been previously reported for other Nb^{IV} complexes [Nb(η^5 -C₅H₄-SiMe_3)₂(PhN=C=CPh₂-N,C)] [1b], [Nb(η^5 -C₅H_4SiMe_3)₂(Ph_2C=C=O,C,O] [5] and [Nb(η^5 -C₅H_4SiMe_3)₂(Ph_2CHCHO-C,O)][6].

We can formulate that the electrogenerated species 4 is $[Nb(\eta^5-C_5H_4SiMe_3)_2$ (PhC=CPh-C,C)]. The height of wave B₁ indicates that 4 was formed quantitatively. The IR spectrum of 4 in THF shows a band at 1710 cm⁻¹ which corresponds to ν (C=C) of the η^2 coordinated diphenylacetylene. Complex 4 was isolated from the THF solution as a very air-sensitive brown crystalline solid after appropriate work-up [8*].

The formation of complex 4 agrees with the following global reaction:

$$\begin{bmatrix} Nb(\eta^{5}-C_{5}H_{4}SiMe_{3})_{2}Cl_{2} \end{bmatrix} + PhC \equiv CPh \xrightarrow{+2e^{-}}$$

$$(1)$$

$$\begin{bmatrix} Nb(\eta^{5}-C_{5}H_{4}SiMe_{3})_{2}(PhC \equiv CPh) \end{bmatrix} + 2Cl^{-}$$

$$(1)$$

$$(4)$$

$$(1)$$

We have also studied the electrochemical behaviour of the known Nb^V derivative $[Nb(\eta^5-C_5H_4SiMe_3)_2Cl(PhC=CPh-C,C)]$ (3) [2]. The cyclic voltammogram of 3 exhibits a reduction peak B and an oxidation peak B'₁; during the second scan, a reduction peak B₁ appears at lower cathodic potential than B (Fig. 4). The B₁/B'₁ system is similar to that of Fig. 2.

When the electrolysis of 3 was performed at -2.1 V (plateau of wave B) and after consumption of 1 equiv. of electrons, the reduction wave B₁ and the same ESR spectrum (Fig. 3) were obtained. This ESR spectrum was also obtained after one-electron reduction of $[Nb(\eta^5-C_5H_4SiMe_3)_2X(PhC=CPh)]$ (X = Br or I). This indicates that halide (choride, bromide, or iodide) is not present in complex 4.

The two-electron transfer (see reaction 1) can be explained by the following reactions. One-electron reduction of 1 generates the anion $[Nb(C_5H_4SiMe_3)_2Cl_2]^-$

Fig. 4. Cyclic voltammogram of 3 in THF on a platinum electrode. Starting potential, -1.2 V; sweep rate, 0.2 V s⁻¹. (a) First scan; (b) second scan.

(2) which is oxidized at the potential of peak A'. The addition of PhC=CPh leads slowly to the partial regeneration of $[Nb(\eta^5-C_5H_4SiMe_3)Cl_2]$ and the formation of 4 which is reducible at the potential of B₁. On the other hand, when complex 3 is added to the anionic species 2, the reaction is faster and the formation of 1 and 4 was observed by polarography and by ESR spectroscopy (the characteristic signal of Nb($\eta^5-C_5H_4SiMe_3$)Cl₂ is superimposed on the spectrum of Fig. 3).

The above results can be rationalized by the following scheme:

$$[NbCp'_2Cl_2] \xrightarrow{e} [NbCp'_2Cl_2]^- (system A/A')$$
(a)
(1)
(2)

$$[NbCp'_{2}Cl_{2}]^{-} + PhC \equiv CPh \xrightarrow{slow} [NbCp'_{2}Cl(Ph \equiv CPh)] + Cl^{-}$$

$$(2) \qquad (3)$$

$$2 + 3 \xrightarrow{\text{fast}} 1 + [\text{NbCp}_2'(\text{PhC=CPh})] + \text{Cl}^-$$
(c)
(4)

$$3 \xrightarrow{2e^{-}} \left[NbCp_{2}'(Ph \equiv CPh) \right]^{-} + Cl^{-} \quad (peak B) \tag{d}$$

$$5 + 3 \longrightarrow 2[NbCp'_2(PhC=CPh)] + Cl^-$$
(e)
(4)

$$\begin{bmatrix} NbCp_{2}'(PhC=CPh) \end{bmatrix} \xrightarrow{e^{-}} \begin{bmatrix} NbCp_{2}'(Ph=CPh) \end{bmatrix}^{-} \text{ (system } B_{1}/B_{1}') \text{ (f)} \\ (4) \text{ (5)} \\ (Cp' = \eta^{5}-C_{5}H_{4}SiMe_{3}) \end{bmatrix}$$

The two-electron reduction of complex 3 (peak B) corresponds to an ECE process involving cleavage of the niobium-halogen bond. The anionic species formulated as $[Nb(C_5H_4SiMe_3)_2(PhC=CPh)]^-$ (5) was formed, and is oxidized at the potential of peak B₁'. The formation of 4 during the electrolysis of 3 can be explained by an outer-sphere electron-transfer reaction between 3 and 5 (reaction e) since the potential difference is 0.18 V; complex 5, which is generated at the electrode, diffuses towards the bulk of the solution and comes in contact with 3, which diffuses towards the electrode and reaction e takes place. The B₁/B₁' system corresponds to the redox reaction (f).

A full paper concerning the chemical synthesis of acetylenic niobium(V) derivatives and the electrochemical synthesis of acetylene niobium(IV) complexes will be published later.

Acknowledgements

We gratefully acknowledge financial support from Direction General de Investigacion Científica y Technica (DGICYT PB 89-0206) and Accion Integrada Hispanofranscesca (HF 106) and thank Mrs M.T. Compain for technical assistance.

References and notes

- (a) A. Antinolo, P. Gomez-Sal, J.M. de Ilarduya, A. Otero, P. Royo, S.M. Canevas and S. Garcia-Blanco, J. Chem. Soc., Dalton Trans., (1987) 975; (b) A. Antinolo, M. Fajardo, C. Lopez Mardomingo, A. Otero, Y. Mourad, Y. Mugnier, J. Sanz-Aparicio, I. Fonseca and F. Florencio, Organometallics, 9 (1990) 2919.
- 2 A. Antinolo, M. Fajardo, F.A. Jalon, C. Lopez Mardomingo, A. Otero and C. Sanz-Bernabe, J. Organomet. Chem, 369 (1989) 187.
- 3 H. Nabaoui, A. Fakhr, Y. Mugnier, A. Antinolo, M Fajardo, A. Otero and P. Royo, J. Organomet. Chem., 338 (1988) C17.
- 4 Oxidation waves of chloride ions were observed.
- 5 A. Antiñolo, M. Fajardo, C.L. Mardomingo, A. Otero, D. Lucas, Y. Mugnier, M. Lanfranchi and M.A. Pellinghelli, J. Organomet. Chem., 435 (1992) 55.
- 6 D. Lucas, H. Chollet, Y. Mugnier, A. Antiñolo, M. Fajardo and A. Otero, J. Organomet. Chem., 426 (1992) C4.
- 7 D. Lucas, Y. Mugnier, A. Antiñolo, A. Otero and M. Fajardo, J. Organomet. Chem., 435 (1992) C3.
- 8 The THF solution, obtained from the two-electron reduction of 1 at -115 V was evaporated to dryness, 4 was extracted with hexane and then the solution was concentrated and cooled to -10° C to give a brown crystalline precipitate which was identified as complex 4. Mass spectrum (m/e). 545 (molecular ion).